Información de Salud y Ciencia

por Melania Bentué

6/3/2018

Investigadores aplican modelos numéricos a la córnea para entender mejor cómo se comporta y ayudar en la planificación quirúrgica

Datos y algoritmos desarrollados a través del ordenador, junto a la imagen 3D, facilitan a los oftalmólogos hacer una cirugía del ojo más precisa y tratamientos personalizados para cada paciente

Investigadores aplican modelos numéricos a la córnea para entender mejor cómo se comporta y ayudar en la planificación quirúrgica

Un correo electrónico, una hoja Excel con datos y números, y una invitación a participar en un trabajo sobre biomecánica corneal es lo que recibió Miguel Ángel Ariza Gracia de su profesora, Begoña Calvo, catedrática de la Universidad de Zaragoza, para realizar su tesis doctoral en el Instituto de Investigación en Ingeniería de Aragón (I3A). "Esta hoja Excel es una córnea y hay que reconstruirla", fue el mensaje que recibió Miguel Ángel. Él aceptó el reto, aplicar métodos y modelos numéricos a la investigación en Oftalmología, que junto a los avances en imágenes 3D, tratan de aportar a los médicos más información, y de manera más precisa, para obtener mejores cirugías, más personalizadas, y nuevos tratamientos.

En esta línea de investigación, enmarcada en el proyecto Europeo PopCorn, es en la que ha estado trabajando Miguel Ángel Ariza desde septiembre de 2013 bajo la supervisión de Begoña Calvo y José Félix Rodríguez Matas, del grupo de investigación en Mecánica Aplicada y Bioingeniería (AMB) del I3A y del Laboratory of Biological Structure Mechanics (LabS) del Politécnico de Milán, respectivamente. Ahora, la Universidad de Zaragoza ha reconocido su trabajo con el premio extraordinario a la mejor tesis doctoral del programa de Ingeniería Biomédica de 2017.

Los avances en biomecánica de la córnea permitirán mejorar la cirugía láser para miopía, hipermetropía y astigmatismo y desarrollar sistemas de detección más precisos de diferentes patologías de la córnea. 
 
Aquí se unen tres tecnologías, la topografía (permite medir la geometría de la córnea), la tonometría de no contacto o soplo de aire (deforma la córnea para obtener variables dinámicas que se creen asociadas a las propiedades de la córnea) y los modelos in silico o numéricos. Las tres, junto a la tecnología de imagen plenóptica, "pueden permitir obtener la geometría del ojo de un paciente, con sus propiedades personalizadas para dar mejor asesoramiento a los médicos en las cirugías refractivas o en la planificación de otra intervención quirúrgica", subraya Miguel Ángel Ariza.
 
Begoña Calvo, que también trabaja en el modelado numérico de otras estructuras como músculo esquelético, puntualiza que este proceso "genérico" de reconstrucción, traslado de datos clínicos al modelo y generación de un modelo de elementos finitos se puede utilizar para simular otros tratamientos o a reproducir diferentes técnicas quirúrgicas. "El trabajo de Miguel Ángel nos ha permitido adentrarnos en lo que hoy se conoce como inteligencia artificial, disponer de los algoritmos necesarios para generar bases de datos que puedan ser utilizados en la clínica", señala.
 
Fibras de colágeno en la córnea
 
La calidad del tejido de la córnea depende de las fibras de colágeno que tenemos embebidas en el estroma corneal, su orientación es lo que le da esa transparencia y sus enlaces (crosslinks) la integridad estructural. "Nuestra propuesta es ir un paso más allá, trabajar para entender mejor la fibra de colágeno", explica Ariza. 
 
Hoy en día, "no existe un equipo técnico que proporcione todas las propiedades y permita saber qué calidad tiene el tejido corneal para ser capaces de responder adecuadamente a la cirugía y tratamientos posteriores", recuerda la doctora Calvo. 
 

Comentarios

Deja un comentario





Newsletter

Premios Salud Digital. Mejor Blog de Salud 2022: elblogdezoe.es
Melania Bentué . Premio Cine y Salud 2018 . Periodista Zaragoza

Hemeroteca

2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012